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Figure 1: Instrumentation Setup.

The temperature we want to 
measure is constant
We want to consider the case where the air 
temperature in the pipe is constant, and 
we begin by studying the heat flow. Heat is 
transferred from the air in the pipe to the 
immersion pocket by forced convection. In 
the immersion pocket and the sensor, heat 
is transported through thermal conduc-

tion. Where the immersion pocket is 
attached to the pipe, heat is exchanged 
with the pipe wall through thermal con-
duction. A certain amount of heat 
exchange through thermal conduction can 
also occur with the pipe’s insulation. 
Outside the insulation, heat is transported 
from the coupling head to the surroundings 
through convection and radiation. If the 
air velocity in the surroundings is negli-
gible, the convective heat transport occurs 
through natural convection.

In this case, there is a small heat flow 
in the immersion pocket with the sensor, 
from the air in the pipe to the pipe’s 
surroundings, the temperature of which is 
lower than the air temperature in the pipe. 
This means that the measuring point in 
the sensor will measure a temperature that 
is somewhat lower than the air tempera-
ture that we want to determine. 

Thermocouple and Pt 100-type 
sensors are so-called contact sensors that 
measure their own temperature and abso-
lutely nothing else. So in this case there is 
a difference between the temperature that 
we want to measure – the air temperature 
in the pipe – and the temperature that we 
actually measure – the temperature of the 
sensor. In some cases, the measurement 
error can be disregarded, but this must be 
decided on a case-by-case basis.

The temperature we want to mea-
sure varies with time
In the measurement installation shown in 
Figure 1, we now assume that the air 
temperature in the pipe varies with time. 
This almost always means that the 
response time to a temperature change in 
the pipe is of interest. When discussing 
response time, we often assume that the 
temperature we want to measure changes in 
the form of a step between two temperature 
levels. Unfortunately, these types of tempe-
rature changes rarely occur in engineering 
applications. What usually happens is that 
the temperature change between two levels 
takes the form of a ramp. We will therefore 
take a closer look at this case.

We now take the measurement instal-
lation in Figure 1 as a basis and make the 
following assumptions. The inner diameter 
of the pipe is 200 mm, the outer diameter 
of the immersion pocket is 10 mm, and 
its length inside the pipe is 100 mm. Air 
flows in the pipe and the air temperature 
changes slowly at regular intervals between 
two levels, 30 °C and 180 °C. Each change 
takes approximately 20 minutes. We 
also assume that the heat flow from the 
immersion pocket with the sensor to the 
surroundings is negligible.

Figure 2 shows a basic picture of the 
temperature in the pipe and the measured 
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temperature as a function of time. When 
the air temperature changes in the pipe, 
the sensor in the immersion pocket mea-
sures the air temperature with a certain 
lag. After some time, the temperature devi-
ation becomes constant. Since, in this case, 
the heat flow from the immersion pocket 
to the pipe’s surroundings is negligible, the 
measured temperature will connect with 
the constant upper temperature level after 
a certain length of time. The difference 
between the air temperature in the pipe 
and the measured temperature can be 
regarded as a measurement error. The 
time-dependent measurement error in 
this case depends, among other things, on 
the appearance of the ramp, the geometry 
and physical properties of the immersion 
pocket and sensor, and the heat transfer 
coefficient between the air in the pipe and 
the immersion pocket.

In some cases, we have a heat flow from 
the air in the pipe to the surroundings via 
the immersion pocket and the sensor.  The 
measured temperature will then connect to a 
slightly lower temperature than the constant 
upper temperature level in the ramp.

To determine the difference between 
the temperature we want to measure and 
the temperature we actually measure, we 
can calculate the temperature distribution 
in the immersion pocket and the sensor. 
This is a three-dimensional time-depen-
dent heat conduction problem. For the 
temperature, T, in ºC in the immersion 
pocket with the sensor, T = T(t, x, y, z), 
where t is the time in seconds, and x, y and 
z are Cartesian coordinates in metres. 
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Figure 2: Temperatures as a function of 
time. 

To calculate the temperature field, we must 
use the heat conduction equation with 
associated boundary conditions and initial 
condition. Unfortunately, there is no gene-

ral analytical solution to this three-dimen-
sional time-dependent problem, so we 
must use some suitable numerical method. 
In this case, it makes sense to use the Finite 
Element Method, FEM. 

If we ignore the heat flow in the im-
mersion pocket and sensor to the surroun-
dings in the axial direction (z-direction), 
we can simplify the problem. This restric-
tion means, among other things, that we 
disregard the heat exchange with the pipe 
wall, the pipe insulation and the pipe’s 
surroundings. With this assumption, we 
need only study what happens in a cross 
section of the immersion pocket and the 
sensor, which makes the problem two-
dimensional, T = T(t, x, y), where x and 
y are coordinates in the cross section. This 
problem is considerably simpler than the 
three-dimensional problem. Unfortunately, 
even in this case, a numerical method is 
almost always required to calculate the 
temperature field.

If the temperature difference within 
the cross-section of the immersion 
pocket and sensor were considerably 
smaller than the temperature difference 
between the surface of the immersion 
pocket and the flowing air in the pipe, the 
problem could be simplified further. If 
we disregard the temperature differences 
within the immersion pocket and sensor, 
the temperature would be T = T(t). This 
means that the temperature within the 
immersion pocket and the sensor only 
depends on time t.

To solve the simplified problem, the 
so-called ”lumped-heat-capacity method” 
can be used in some cases, which gives 
us a first-order differential equation. 
In many technically important cases, 
there is also an analytical solution to this 
problem.

To determine whether the “lumped 
method” is applicable, we can use a 
dimensionless number, the so-called Biot 
number, Bi = (hL)/k, where h is the heat 
transfer coefficient in W/(m2K) between 
the immersion pocket and the flowing air 

in the pipe, L is a characteristic length in 
metres for the geometry in question, and 
k is the thermal conductivity in W/(m K) 
in the immersion pocket and the sensor. 
If the immersion pocket is regarded as a 
long cylinder with perpendicular flow, the 
characteristic length is L = D/4, where D 
is the diameter of the immersion pocket 
in metres.

The Biot number is basically a 
measure of the ratio between the tempe-
rature difference within the cross section 
and the temperature difference between 
the surface of the immersion pocket and 
the flowing air in the pipe. The “lumped 
method” can be used if the Biot number 
is small. In engineering applications, the 
method generally gives acceptable results 
if Bi < 0.1.

An example of temperature 
change in the form of a ramp
To determine the magnitude of the 
measurement error, the simplest possible 
method should be used. In this case, an 
engineering assessment needs to be made. 
We therefore start by checking whether 
the “lumped method” is applicable.

The outer diameter of the immersion 
pocket is 10 mm, which gives the charac-
teristic length L = 0.0025 m. The heat 
transfer coefficient varies along and around 
the immersion pocket, and we use a mean 
value. With an air velocity of 10 m/s in 
the pipe, the heat transfer coefficient is 
approximately 95 W/(m2K), if we regard 
the diving pocket as a long cylinder with 
a perpendicular flow. The physical data of 
the air varies with the temperature, and 
we should therefore use a mean tempera-
ture, which in this case is (30 + 180)/2 = 
105 ºC. If we assume that the immersion 
pocket and sensor mainly consist of stain-
less steel, k = 15 W/(m K).

The Biot number with these values is 
0.015, and the “lumped method” can be 
used, since Bi < 0.1.  

Continue reading  

"Unfortunately, it’s not always possible 
to determine the temperature that you 
actually want to measure." 
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When using the “lumped method” 
to calculate the change in temperature 
over time, we must always bear in mind 
that the method is approximate, and that 
the calculation is based on a number of 
conditions and assumptions. It is there
fore very important to remember this 
when evaluating the calculation results.

If we now assume that the “lumped 
method” applies, we are able, with the 
current assumptions, to determine the 
change in sensor temperature over time 
based on the following differential equation

dT/dt + ((4h)/(ρcD))T =  
((4h)/(ρcD))TFluid
 
where, ρ is the density of the immersion 
pocket in kg/m3 and c its specific heat 
capacity in (Ws)/(kg K). Both the density 
and the specific heat capacity vary within 
the cross-section of the studied cylinder, 
which consists of the immersion pocket 
and the sensor. This means that we must 
use the mean values of both the density 
and the specific heat capacity.

The air temperature in the pipe in this 
case changes in the form of a ramp:  
TFluid = T0 + Bt where, T0 is the air 
temperature at time t = 0, and B is a 
coefficient that characterizes the appea-
rance of the ramp and is given in  
ºC/second. The initial condition required 
for the solution to the equation in this 
case is T = T0, i.e. the cylinder tempe-
rature is equal to the air temperature 
at time t = 0. We now assume that the 
parameters h, ρ, c and B can be regarded 
as constants.

With the introduced conditions, the 
differential equation has the analytical 
solution 

T = T(t) = T0 + Bt – (ρcDB)/(4h) + 
((ρcDB)/(4h)) e-(4ht)/(ρcD) 

This solution applies as long as the air 
temperature in the pipe changes in the  
form of a ramp. In this case, the relation- 
ship applies during the time 0 < t < 1 200 
seconds.

The first two terms in the equation 
solution are the temperature of the ramp, 
i.e. the temperature change of the air in 
the pipe. The last term in the equation 
solution represents the settling process, 
which starts at time t = 0. The term 
contains the expression e-(4ht)/(ρcD), which 
decreases with time t. This means that 

the settling process will “die out” after 
some time – the settling time.

The penultimate term in the 
equation solution, (ρcDB)/(4h), is the 
constant deviation, ΔT °C, between the 
temperature of the air in the pipe and the 
measured temperature, which is obtained 
when the settling process has “died out”;  
ΔT = (ρcDB)/(4h). See also Figure 2.

 
Based on the expression for ΔT, which 
represents the difference between the 
air temperature in the pipe and the 
temperature we measure, we can make a 
number of interesting observations. For 
the measurement error ΔT the following 
applies: ΔT = (ρcDB)/(4h)

If the air velocity in the pipe were to 
increase, the heat transfer coefficient  
h W/(m2K) will increase, and this means 
that the deviation ΔT will decrease.  We 
also find that the faster the air temperature 
in the pipe changes (larger B), the greater 
the deviation ΔT.

The deviation ΔT also increases with 
the outer diameter D of the immersion 
pocket, but here the relationship becomes 
a little more complicated, since an increase 
in the diameter D also affects the value of 
the heat transfer coefficient h W/(m2K). 
If the diameter of the immersion pocket 
were to increase from 10 mm to 12 mm, 
the heat transfer coefficient h W/(m2K) 
would decrease by approximately 7%. 
Overall, this means that the deviation ΔT 
increases by almost 22% when the outer 
diameter increases by 20%.

For the current case, B = (180 – 30)/1200  
= 0.125 ºC/s applies, and for the cylinder 
we use values for stainless steel;  
ρ = 7900 kg/m3 and c = 480 (Ws)/(kg K). 
With these values, we get ΔT = 13 ºC.  
The settling process takes just over  
7 minutes. It should be pointed out once 
again that the calculation method is 
approximate and based on a number of 
assumptions and conditions. Nevertheless, 
the result gives a good idea of the measure
ment method and its limitations, as well as 
the parameters that affect the deviation  ΔT.  
We could put it as follows: “The calculation 
is not perfect, but it is good enough in an 
engineering context.”

If a more accurate calculation is 
required, it will be necessary to study  
the two or three-dimensional time- 
dependent problem, and use an appro-
priate numerical method.

Some comments on the calculation 
results regarding the ramp  
measurement
The maximum deviation between the air 
temperature we want to measure and the 
sensor temperature we measure is in this 
case approximately 13 ºC. This value is 
almost 9% of the difference between the 
two temperature levels 30 ºC and 180 ºC. 
If the primary interest in the temperature 
measurement concerns the two tempera-
ture levels in the ramp, we could, perhaps, 
accept the deviation ΔT = 13 ºC, which 
only affects the part of the process where 
the temperature changes between the two 
levels. However, if you want to have control 
over the entire temperature process, a 
deviation of 13 ºC is barely acceptable.

To reduce the measurement error that 
always arises when this type of equipment is 
used for measuring, you could, for example, 
use an immersion pocket with associated 
sensors that have a smaller outer diameter. 
If the outer diameter of the immersion 
pocket is 6 mm, the heat transfer coefficient 
will be approximately 120 W/(m2K), and 
the Biot number 0.012.  We can therefore 
use the “lumped method”. In this case, we 
get the deviation ΔT = 6 ºC, which is 
approximately half the measurement error 
when the outer diameter of the immersion 
pocket was 10 mm. The settling time will 
also be about half as long.

You could also install a sensor that is 
specially designed to provide as little devia-
tion as possible between fluid temperature 
and sensor temperature during dynamic 
processes. See example in Figure 3. 

Figure 3: Example of  
a Pt100 sensor with  
reduced tip, model  
7945000.
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